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Abstract
We critically work over the density functional theoretical foundation of the
interfacial free energy with curvature terms. For a spherical interface described
by a free-energy functional with square-gradient and square-Laplacian terms we
find that the grand potentials of the stationary states are given exactly (and only)
by pressure–volume and interfacial tension contributions. On the other hand,
when the density functional is partially optimized in the subspace of densities
with fixed interface position, the resulting effective interface potential acquires
in the limit of large radius the customary form of Helfrich. We illustrate our
findings with a description for the nucleation of micelles.

1. Introduction

Microemulsions and related lyotropic liquid-crystalline phases possess a mesoscopic structure
consisting of immiscible solvent regions bordered by thin fluctuating amphiphile interfaces,
and the shape properties of these internal interfaces appear to be essential in determining the
macroscopic phase behaviour [1]. In view of this, much theoretical work has been carried out
viewing mixtures of amphiphiles with otherwise immiscible solvents as systems of interfacial
films where the supporting solvents participate through certain film parameters [1]. Because
interfaces formed by amphiphiles often have very small or vanishing tensions, it is important
to incorporate in the free energy the contribution from interfacial bending. Consequently, the
interfacial free energy is given by the following expression:

FH =
∫

dS
[
γ − 2κc0J + κJ 2 + κK

]
(1.1)

where dS is the element of area, J/2 and K , are, respectively, the mean and the Gaussian
curvatures of the surface that represents the interface, and γ , c0, κ and κ are, respectively,
the interfacial tension, the spontaneous curvature, the bending rigidity and the saddle-splay
constant. (Note that our definition of κ differs from that given in some of the references
below by a factor of two.) The Helfrich free energy [2], as equation (1.1) is known, is usually
derived, phenomenologically, under the assumption that the bending properties of the interface
are those of a continuum thin elastic plate. Equation (1.1) can be viewed as a functional of the
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surface curvatures from which equilibrium shapes can be determined. Thus, for given values
of the coefficients γ , c0, κ and κ , the equilibrium shape of the interfacial film is obtained by
minimization of FH over all possible surface shapes.

There have been several attempts [3, 4] to give a statistical-mechanical foundation to the
Helfrich free energy, and the density functional approach has proved to be a powerful tool
for achieving this end [4]. The prototypical density functionals in these studies contain terms
proportional to the square gradient and the square Laplacian of (one, scalar) order parameter
that can be thought to represent the local difference in concentration of the two solvents. As a
result of these studies, expressions have been obtained for the quantities involved, such as the
spontaneous curvature and the bending rigidities [4]. However, it has been found that in the
absence of approximations the equilibrium interfacial coefficients appear defined locally across
the interface [4], and that they have a characteristic dependence on the local curvature [4], of
the type previously found a long time ago for the surface tension and measured by the length
of Tolman [5, 6].

Here we discuss further the nature of the statistical-mechanical basis for the free energy
of a curved interface. For concreteness and simplicity of presentation, we describe our
analysis in terms of a spherical interface although our derivations apply to more general
geometries. We first investigate whether the model free-energy functional complies with
the known phenomenological rules for the moments of the pressure tensor that are related
to the Laplace equation and to the torque on a slice of the interface [6]. For this purpose
we determine exactly the normal and tangential components of this tensor by considering a
general deformation of the inhomogeneous fluid [7], and find that the grand potential 
eq of
the equilibrium (or, more generally, for other stationary) states consists of only two terms, a
pressure–volume term and an interfacial tension term. The values for the interfacial tension
and the position of the Gibbs dividing surface R are fixed by the moment rules. Closer
examination of the expression for the equilibrium interfacial tension reproduces the Helfrich
form with locally defined interfacial coefficients (i.e. for each position across the interface).

A different approach that we also follow here is that of optimizing the density functional
in two steps. In the first step optimization is carried out within the subspace of interfacial order
parameter profiles φ(r)with a fixed value φR at positionR, and we obtain an effective potential

(R) that reproduces for large R the conventional global form of Helfrich. This procedure
is similar to that devised some years ago [8] for interfaces near a planar wall and that led to
the development of effective interfacial potentials for the study of wetting phenomena [8].
Technically, the grand potential functional contains, in addition to the chemical potential µ
(associated with a uniform field), another Lagrange multiplier ν associated with a delta-like
potential that fixes the position of the interface. The interfacial coefficients in 
(R) have a
strong dependence on the choice of the reference value φR of the order parameter.

We illustrate our findings with a description for the nucleation of micelles. We use a local
free-energy density with three minima [9] and find for a suitable model parameter region the
occurrence of two nucleation radii, R1 and R2, and a metastable micelle of intermediate radius
Rm which may be nucleated from fluctuations within R1 < R < R2. (The stable phase is a
uniform phase.) The stability analysis of these spherical objects has been studied recently [10]
for the same model free energy, and agreement with the predictions of that study and those
from the effective potential 
(R) is obtained.

The outline of the rest of the article is as follows. In the next section we recall the
properties of the moments of the pressure tensor for a spherical interface. In section 3 we
derive the pressure tensor p from the grand potential functional 
[T ,µ;φ(r)], where T is the
temperature. We obtain the exact expression for the equilibrium grand potential 
eq(T , µ),
as well as those for the pressure difference across the interface and the position of the Gibbs
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dividing surface. In section 4 we perform the partial optimization of the modified functional

[T ,µ, ν;φ(r;R)] and obtain the effective potential 
(R), and describe its properties for
large R. In section 5 we present a description for the nucleation of micelles in terms of 
(R).
Section 6 contains a brief discussion.

2. Phenomenological theory

The pressure tensor across an spherical interface has the form

p = pnr̂r̂ + pt(θ̂θ̂ + ϕ̂ϕ̂) (2.1)

where pn and pt are the components along its normal (r̂) and tangential (θ̂, ϕ̂) directions,
respectively. We recall [6] that the vanishing divergence ∇ · p = 0 implies that

d

dr
rkpn = rk−1((k − 2)pn + 2pt) k = 0, 1, . . . (2.2)

where r is the radial direction, and from this expression the following properties are obtained.
First, integration of equation (2.2) when k = 0 yields

pn(0) − pn(L) = Pin − Pout = 2
∫ L

0
dr r−1(pn − pt) (2.3)

where L is the linear size of the system and Pin and Pout are the pressures inside and outside of
the spherical droplet, respectively. For equation (2.3) to be in correspondence with the Laplace
equation, the ratio of the tension σ to the radius R of the droplet must be

σ/R =
∫ L

0
dr r−1(pn − pt). (2.4)

(Notice that we have used here a different notation for the interfacial tension from that of the
previous section: σ instead of γ .) Next, we consider k = 2, and note that the force per unit
angle on a wedge of the sphere is given by∫ L

0
dr rpt = 1

2
L2Pout (2.5)

which can be rewritten, after addition and subtraction of equation (2.3), multiplied by R2/2,
and use of equation (2.4), as∫ L

0
dr rpt = 1

2
(L2 − R2)Pout +

1

2
R2Pin − σR. (2.6)

Equation (2.6) states that the force evaluated through integration of rpt is equivalent to the
force obtained from three contributions, two from the constant pressures inside and outside the
sphere and the third from the interfacial tension. Finally, the case k = 3 relates to the moment
of the force per unit angle on the wedge:∫ L

0
dr r2pt = −1

3

∫ L

0
dr r2(pn − pt) +

1

3
L3Pout (2.7)

which can be rewritten, after addition and subtraction of equation (2.3), multiplied by R3/3,
and use of equation (2.4), as∫ L

0
dr r2pt = 1

3
(L3 − R3)Pout +

1

3
R3Pin − 1

3

∫ L

0
dr r2(pn − pt) − 2

3
σR2. (2.8)
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If we require that the total torque on the wedge consists of a pressure term and an interfacial
tension term, i.e.

σR2 =
∫ L

0
dr r2(pn − pt) (2.9)

equation (2.8) becomes∫ L

0
dr r2pt = 1

3
(L3 − R3)Pout +

1

3
R3Pin + σR2. (2.10)

The values of σ and R can be determined from equations (2.4) and (2.9) provided 0 < σ < ∞
and 0 < R < ∞; they are

σ =
(∫ L

0
dr r2(pn − pt)

)1/3(∫ L

0
dr r−1(pn − pt)

)2/3

(2.11)

and

R =
(∫ L

0
dr r2(pn − pt)

)1/3(∫ L

0
dr r−1(pn − pt)

)−1/3

. (2.12)

When R is large, σ is given by

σ =
∫ L−R

−R

dz (pn − pt) (2.13)

and R is obtained from the condition∫ L

0
dr (r − R)(pn − pt) = 0 (2.14)

where r = R + z. We recognize in equations (2.13) and (2.14) the customary ‘mechanical’
expressions for the surface tension and for the position of the Gibbs dividing surface of a
spherical interface [6]. We will return to the expressions for the moments of the pressure
tensor components given by equations (2.7) and (2.10) in the next section where we determine
the pressure tensor components for our model free-energy functional.

3. Density functional theory

Consider the following form for the grand potential density functional, 
 = ∫
dr ω(φ), of a

single (scalar) order parameter φ(r):


 [φ(r)] =
∫

dr

{
f (φ(r)) +

1

2
A(φ(r))(∇φ(r))2 − 1

4
B(φ(r))(∇2φ(r))2 − µφ(r)

}
(3.1)

where f (φ) is the free-energy density of the uniform system, µ is the chemical potential
conjugate to φ, and the quantities A(φ) and B(φ) are, respectively, proportional to the second
and fourth moments of the direct pair correlation function [4]. Our method for deriving an
expression for the pressure tensor p from equation (3.1) is based [7] on the determination of
the change in grand potential (
V that takes place in a subsystem with volume V of the fluid
as a vector deformation δr is applied to it. From (
V , obtained in the form of an integral
over V of the strain, ε = ∇ δr, times p, we obtain the sought for expression for the pressure
tensor. When the functional contains only the traditional squared gradient term, we recover
the known symmetric form for p [11]. There are two sources for the change (
V : one due to
a change in V , (V
, and the other due to a change in φ, (φ
. We can immediately write

(V
 =
∫
S

dr ω =
∫
S

dS · δr
[
f − µφ +

1

2
A(∇φ)2 − 1

4
B(∇2φ)2

]
(3.2)
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where S is the surface that encloses V . And by considering that the surfaces φ(r) = constant
are moved by the displacement vector δr from r − δr to r and that

φ(r − δr) � φ(r) − ∇φ · δr
we have

(φ
 =
∫
V

dr

(
∂f

∂φ
− µ

)
∇φ · δr

−
∫
V

dr A∇φ · ∇(∇φ · δr) +
1

2

∫
V

dr B ∇2φ ∇2(∇φ · δr). (3.3)

After integration by parts and use of the Euler–Lagrange equation associated with equation
(3.1) we obtain [7]

(
V ≡ (V
 + (φ
 =
∫
S

dS · δr · ω(φst )1 −
∫
S

dS · δr · ∇φst A∇φst

+
1

2

∫
S

dS · ∇ ∇φst B ∇2φst δr − 1

2

∫
S

dS · ∇φst ∇(B ∇2φst ) · δr

+
1

2

∫
S

dS · B ∇2φst ∇ δr · ∇φst (3.4)

where φst is a stationary solution of equation (3.1) and where 1 is the unit tensor. This last
equation can be cast into the form [7]

(
V = −
∫
V

dr ε : p +
∫
S

dS ε : τ (3.5)

where p and τ are the symmetric tensors

p = −ω(φst )1 + ∇φst A∇φst +
1

2
∇φst ∇(B ∇2φst ) +

1

2
∇(B ∇2φst )∇φst

− 1

2
∇(B ∇2φst ) · ∇φst 1 − 1

2
∇2φst B ∇2ρ0 1 (3.6)

and

τ = 1

2
B ∇2φst (n̂ ∇φst + ∇φst n̂) − 1

2
(n̂ · ∇φst )B ∇2φst1 (3.7)

where n̂ is the unit tensor normal to φst (r) = constant, and where the property ∇ · p = 0
holds. Also, if the strain takes place only in the interior of the region of volume V ,
i.e. δr = constant on S, the strain tensor ε vanishes on S and the surface term in (
V

does likewise.
For a spherical interface, equation (3.6) becomes

p = −ω1 + r̂A(φ′)2r̂ + Br̂φ′ d

dr

(
2

r
φ′ + φ′′

)
r̂

− 1

2
B

[
φ′ d

dr

(
2

r
φ′ + φ′′

)
+

(
2

r
φ′ + φ′′

)2
]

1 (3.8)

where the primes denote differentiation with respect to r . Thus, the normal and tangential
components of p are explicitly given by

pn = −ω + A(φ′)2 − 1

2
B

[
−φ′ d

dr

(
2

r
φ′ + φ′′

)
+

(
2

r
φ′ + φ′′

)2
]

(3.9)
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and

pt = −ω − 1

2
B

[
φ′ d

dr

(
2

r
φ′ + φ′′

)
+

(
2

r
φ′ + φ′′

)2
]
. (3.10)

We can now evaluate the moments discussed in the previous section for our model. At the
outset we notice that

4π
∫ L

0
dr r2pt = −4π

∫ L

0
dr r2ω = −
eq (3.11)

which by comparison with equation (2.10) implies that


eq = −PinVin − PoutVout + σS (3.12)

where Vin = (4π/3)R3, Vout = (4π/3)(L3 − R3) and S = 4πR2. This is the main (and
exact) result of this section. That is, for this model the equilibrium grand potential consists
of only two types of contribution, the pressure–volume terms −PinVin and −PoutVout and the
interfacial tension term σS, where σ and R are given by equations (2.11) and (2.12). This
result applies generally to all of the stationary states of the grand potential, i.e. the solutions
of the Euler–Lagrange equation associated with equation (3.1). We also have

4π
∫ L

0
dr r2pn = −PinVin − PoutVout (3.13)

since

4π
∫ L

0
dr r2(pn − pt) = σS. (3.14)

Use of equations (3.9) and (3.10) in equation (3.14), and integration by parts, implies

σS = 4π
∫ L

0
dr r2

[
A(φ′)2 − B(φ′′)2 + 2Bφ′φ′′/r − 3B(φ′)2/r2

]
. (3.15)

This equation can be put in a form similar to that of the Helfrich free-energy equation (1.1)
except that the interfacial coefficients are defined locally, i.e.

σS = 4π
∫ L

0
dr r2

[
γ (r) − 2(κc0)(r)J + κ(r)J 2

]
(3.16)

where the local curvatures are J = 2/r and K = 1/r2 and the local coefficients are

γ (r) = A(φ′)2 − B(φ′′)2 (3.17)

2(κc0)(r) = Bφ′φ′′ (3.18)

and

κ(r) = −κ(r) = −B(φ′)2. (3.19)

As for the pressure difference across the interface, we obtain from

2
∫ L

0
dr r−1(pn − pt) = Pin − Pout (3.20)

the expression

Pin − Pout =
∫ L

0
dr

[
2

r
(A(φ′)2 − B(φ′′)2) − 2

r2
Bφ′φ′′ − 3

r3
B(φ′)2

]
or

Pin − Pout =
∫ ∞

0
dr

[
2

r
γ (r) +

1

r2
(κc0)(r) +

4

r3
κ(r)

]
. (3.21)
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Equations (3.15) and (3.21) have been derived previously by different routes [4, 12]. The
position of the Gibbs dividing surface is given by

R =
{∫ L

0
dr r2

[
A(φ′)2 − B(φ′′)2 + 2Bφ′φ′′/r − 4B(φ′)2/r2

]}1/3

×
{∫ L

0
dr

[
1

r
(A(φ′)2 − B(φ′′)2) − 1

r2
Bφ′φ′′ − 2

r3
B(φ′)2

]}−1/3

. (3.22)

4. Effective interface potential

In view of the results presented in the previous section for the equilibrium properties of the
spherical interface, it is not essential to derive a Helfrich-type functional to obtain the same
results through its optimization. Nevertheless, it is not only instructive but of potential use to
do so. Therefore, in order to derive a Helfrich free-energy expression with global coefficients
from equation (3.1), we optimize this functional partially, only within the subspace of order
parameter profiles φ(r) with given reference value φR ≡ φ(r = R), i.e. with fixed interfacial
position R. The result 
(R) can then be optimized with respect to R to recover the expression
for the equilibrium grand potential 
eq derived in the previous section. Our procedure is best
performed by introducing a Lagrange multiplier ν for the constraint φR , and we consider now
our starting free-energy functional to be


[φ(r;R)] = 
[φ(r)] − νR2φ(r = R) =
∫

dr r2(ω − νδ(r − R)φ) (4.1)

i.e. we seek solutions for the inhomogeneous fluid in the presence of an external potential with
the shape of a Dirac delta function at R. For the spherical interface that we are considering,
the Euler–Lagrange equation associated with equation (4.1) is

df

dφ
− µ +

dA

dφ
(φ′)2 − 1

r2

d

dr
(Ar2φ′) − B

2r2

d2

dr2

[
r2

(
φ′′ +

2

r
φ′

)]

+
B

r2

d

dr

[
r

(
φ′′ +

2

r
φ′

)]
= νδ(r − R). (4.2)

Multiplication of equation (4.2) by φ′ followed by integration with respect to r gives

[f − µφ]ba = 1

2
A(φ′)2

∣∣b
a
− 1

4
B(φ′′)2

∣∣b
a

+
1

2
B(φ′)2

(
φ′′ +

2

r
φ′

)∣∣∣∣
b

a

+
1

2
Bφ′

(
φ′′′ +

4

r2
φ′

)∣∣∣∣
b

a

+
∫ b

a

dr
2

r

[
A(φ′)2 − B(φ′′)2

]

+
∫ b

a

dr

[
− 2

r2
Bφ′φ′′ +

4

r3
B(φ′)2

]
. (4.3)

Evaluating this expression for a = 0 and b = R and then for a = R and b = L and taking
into account that the third derivative of φ is discontinuous at R, with

B

2

[
φ′′′∣∣

R+ − φ′′′∣∣
R−

] = ν (4.4)

we obtain


(R) = −PinVin − PoutVout + 4π

{∫ L

0
dr r2[A(φ′)2 − B(φ′′)2] −

∫ L

0
dr rBφ′φ′′

+ 2
∫ L

0
dr

[
A(φ′)2 − B(φ′′)2 − 1

r
Bφ′φ′′ +

2

r
B(φ′)2

][
R3 − r3

3r

]}
. (4.5)
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This is the main result of this section. It is important to notice that the same expression was
obtained in reference [12] for the equilibrium profile of the spherical interface (and for general
interfacial geometry in reference [4]), but here it holds for the solutions of equation (4.2), those
stationary profiles φ that satisfy the condition φR ≡ φ(r = R). Less generally, an expansion
of equation (4.5) for large R, using r = R + z, and φ = φ0 + φ1/R + φ2/R

2, leads to the
expression


(R) = −PinVin − PoutVout

+ S

{∫ L−R

−R

dz
[
A(φ′

0)
2 − B(φ′′

0 )
2
]

+
2

R

∫ L

0
dz z

[
A(φ′

0)
2 − B(φ′′

0 )
2
]

− 1

R2

∫
dz

[
Aφ′

0φ1 − Bφ′′
0φ

′
1

]
+

1

R2

∫
dz z2

[
A(φ′

0)
2 − B(φ′′

0 )
2
]}

. (4.6)

Equation (4.6) is of the Helfrich form:


(R) = −PinVin − PoutVout +
[
γ − 2κc0J + κJ 2 + κK

]
S (4.7)

with J = 2/R, K = 1/R2 and S = 4πR2, and where

γ =
∫

dz
[
A(φ′

0)
2 − B(φ′′

0 )
2
]

(4.8)

−2κc0 =
∫

dz z
[
A(φ′

0)
2 − B(φ′′

0 )
2
]

(4.9)

and

4κ + κ =
∫

dz z2
[
A(φ′

0)
2 − B(φ′′

0 )
2
] −

∫
dz

[
Aφ′

0φ1 − Bφ′′
0φ

′
1

]
. (4.10)

In obtaining equation (4.6), the following auxiliary relations were employed:∫
dz

[
Aφ′

0φ
′
1 − Bφ′′

0φ
′′
1

] =
∫

dz z[A(φ′
0)

2 − B(φ′′
0 )

2] (4.11)

2
∫

dz z
[
Aφ′

0φ
′
1 − Bφ′′

0φ
′′
1

] =
∫

dz z2[A(φ′
0)

2 − B(φ′′
0 )

2]

−
∫

dz
[
Aφ′

0φ1 − Bφ′′
0φ

′
1

]
+

∫
dz B(φ′

0)
2 (4.12)

and∫
dz

[
Aφ′

0φ
′
2 − Bφ′′

0φ
′′
2

] = 2
∫

dz z
[
Aφ′

0φ
′
1 − Bφ′′

0φ
′′
1

]
+

1

2

∫
dz

[
Aφ′

0φ1 − Bφ′′
0φ

′
1

] − 1

2

∫
dz [A(φ′

1)
2 − B(φ′′

1 )
2]

−
∫

dz z2[A(φ′
0)

2 − B(φ′′
0 )

2] −
∫

dz B(φ′
0)

2. (4.13)

These relations are obtained from the Euler–Lagrange equation (4.2) using r = R + z, and
φ = φ0 + φ1/R + φ2/R

2, multiplying by either zφ′
0 or z2φ′

0, and integrating over z [12].
We point out that thus far, no specific choice for the position of the Gibbs dividing surfaceR

has been introduced in deriving
(R) and that the equilibriumReq obtained from minimization
of 
(R) is still dependent on φR .
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5. Nucleation of spherical micelles

To illustrate how the effective interface potential 
(R) derived above actually works, we
consider specific calculations for a model spherical interface. We specify further the grand
potential functional
[φ] in equation (3.1) by adopting the following piecewise-parabolic form
for the free-energy density f (φ) [9]:

f =


λw(φ − φw)

2 φ < φ1

λaφ
2 + f0 φ1 < φ < φ2

λo(φ − φo)
2 φ2 < φ

(5.1)

where the two minima at φw and φo represent the uniform equilibrium phases when µ = 0 of
solvents w and o, respectively. The height of the central minima at φ = 0 is controlled by the
parameter f0 and decreasing its value has an effect suggestive of addition of amphiphile to the
mixture, and when f0 = 0, the minimum at φ = 0 corresponds to an equilibrium solution of
the two solvents rich in amphiphile. We assume that A has the stepwise form

A =



Aw > 0 φ < φ1

Aa < 0 φ1 < φ < φ2

Ao > 0 φ2 < φ

(5.2)

and B is a constant independent of φ. In figure 1 we show the functions f (φ) and A(φ) that we
used for our calculations described below. Recently [10], the spherical interfaces associated
with this functional have been studied and their stability analysed. In a region of parameter
values, three distinct solutions φ(r) are found: two of them are maxima (unstable stationary
states) and one is a minimum (stable equilibrium state—actually metastable with respect to a
uniform phase) of 
[φ]. In figure 2 we show the profile φ(r) and its first two derivatives φ′(r)
andφ′′(r) for one equilibrium spherical interface. The radii of these solutions were investigated
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(φ

)

Figure 1. The functions f (φ) and A(φ) used for our calculations; φw = −2, φo = 1, λw = 4.6,
λa = −4.5, λo = 4.6, f0 = 1.48, Aw = 9.2, Aa = −9.0, Ao = 9.2, B = −4. The values of φ1
and φ2 are determined from continuity conditions for φ(r) and its derivatives.
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Figure 2. The profileφ(r) and its first two derivativesφ′(r) andφ′′(r) for one equilibrium spherical
interface with µ = 0.

as functions of f0 and µ for chosen fixed values of the other model parameters. The existence
of the stable and unstable branches accounts for the occurrence of nucleation processes in
the model that are descriptive of formation of spherical micelles. Thus, for example, for a
fixed value of f0 and varying µ, the stable solution has a radius Rm bounded by those of the
unstable solutions R1 and R2. The unstable solution with the smaller radius R1 corresponds
to the critical nucleation spherical object and the stable one, with intermediate radius Rm, to
the equilibrium micelle. The other unstable branch with the larger radius R2 corresponds to
another critical sphere at which nucleation can take place of either the equilibrium micelle or
of a uniform phase of infinite radius.

In figure 3 we show the effective interface potential 
(R) for fixed f0 and for various
values of µ; the behaviour described above can be observed for the case where µ = −0.014.
In figure 4 we show the effective potential 
(R) as calculated for both the exact equation
(4.5) and the Helfrich-like large-radius approximation equation (4.6) when µ = −0.015. We
observe that the approximate equation (4.6) reproduces fairly accurately the exact equation
(4.5) for large and moderate R, this within a large interval that includes the maximum with
large radius R2 and the minimum at Rm; however, it fails to display the maximum at the small
radius R1. The results obtained from the exact 
(R) are in agreement with those obtained
from the stability analysis [10] of spherical interfaces for the same density functional model.

6. Discussion

We have examined the density functional basis of the interfacial free energy with curvature
terms. Our analysis was presented for a spherical interface described by a free-energy
functional with square-gradient and square-Laplacian terms that is commonly used to study
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Figure 3. The exact effective interface potential 
(R) (equation (4.5)) for f0 = 1.48 and for
various values of µ.

Figure 4. The effective potential 
(R) as calculated for both the exact equation (4.5) and the
Helfrich-like approximation for large R, equation (4.6), when µ = 0.015.

thin amphiphilic interfaces. As one part of our study, we derived exact expressions for the
components of the pressure tensor and we employed them to evaluate their moments. We
found that the grand potential of the stationary states is given exactly by the sum of two terms,
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i.e. pressure–volume and interfacial tension contributions. The expression for the equilibrium
interfacial tension contribution has the form of an integral over the radial variable and the
integrand has the Helfrich form but with locally defined interfacial coefficients [4,13]. Similar
expressions were obtained for the pressure difference across the interface [12] and for the
position of the Gibbs dividing surface. These results provide a complete and exact solution
for the inhomogeneous problem at hand and the method can be similarly applied to other
interfacial geometries.

We followed a different procedure to obtain a Helfrich free energy from a density functional
theory with the capacity of generating equilibrium interfacial shapes via a variational property.
This method consisted of a partial optimization of the grand potential functional in the subspace
of interfacial order parameter profiles with a fixed value at a given position R. The result is
an effective interface potential 
(R) that in the limit of large R acquires the form of Helfrich.
The expressions obtained for the interfacial coefficients resemble those obtained previously
by other methods [3,12] but there are important differences that deserve mention. First, all the
order parameter profiles φ(r) that make up 
(R) correspond to the same chemical potential µ,
including that for the planar interface, φ0. The equilibrium planar interface requires µ = 0 and
we do not introduce in our treatment a chemical potential expansion µ = µ1/R +µ2/R

2 with
respect to µ = 0. We recall [12, 13] that expressing the equilibrium φeq(r) for the spherical
interface at µ in terms of the equilibrium planar φeq(z) at µ = 0 leads to Tolman [5, 6] and
higher-order curvature corrections to the surface tension. Second, as a concrete example, we
determined the effective potential 
(R) for the piecewise-parabolic form of the free-energy
density f (φ) and analysed the occurrence of stationary states for some range of parameters
of the model. This specific calculation provided the opportunity of comparison of the exact

(R) with the large-R approximation, and we found that the approximate form reproduces
surprisingly well the exact potential for large and intermediate values of R but not for small
R where it disagrees strongly with the exact result. The extrema of the exact 
(R) coincide
with the stationary properties derived in section 3 and therefore are consistent with the Laplace
equation Pin − Pout = 2σ/R. However, the stationary states of the large-R approximation
satisfy a generalized Laplace equation. We recall [4, 12] that optimization of


(J,K) = −PinVin − PoutVout + S
[
γ + 2κc0J + κJ 2 + κK

]
(6.1)

leads to the generalized Laplace equation

Pin − Pout = γ J0 − 4κc0K0 − κJ0(J
2
0 − 4K0) (6.2)

where J0 and K0 are the curvatures for the extrema of 
(J,K). For a spherical surface one
has

Pin − Pout = 2γ /R0 − 4κc0/R
2
0 (6.3)

where R0 is a solution of ∂
(R)/∂R = 0. Therefore, optimization of equation (4.6) with
respect to R for fixed coefficients as given by equations (4.8) to (4.10) automatically satisfies
the generalized Laplace equation (6.3) while R0 is still dependent on φR . Last, we comment on
the dependence of the coefficients given by equations (4.8) to (4.10) on the reference value φR .
This dependence can be estimated by considering a small shift in the choice of R, R → R + δ.
This implies


(R + δ) = −4π

3
Pin(R + δ)3 − 4π

3
Pout (L

3 − (R + δ)3)

+ 4π(γ (R + δ)2 − 4κc0(R + δ) + (4κ + κ)) (6.4)

and therefore the corresponding shifts in the values of the coefficients are

γ → γ + (Pout − Pin)δ (6.5)
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−4κc0 → −4κc0 + 2γ δ + (Pout − Pin)δ
2 (6.6)

4κ + κ → 4κ + κ − 4κc0δ + γ δ2 +
1

3
(Pout − Pin)δ

3. (6.7)

These shifts have been examined for values of δ of the order of the width of the interfacial
profile and it was found that each is of the order of the value of the term in the next order
in 1/R [12]. In figure 5 we show the dependence of the interfacial coefficients γ , 2κc0 and
4κ + κ , as given by equations (4.8) to (4.10), on the value of the reference φR .

Figure 5. Dependences on the reference φR of the interfacial coefficients γ , 4κc0 and 4κ + κ , as
given by equations (4.8) to (4.10).
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